Securing Passive RFID Tags Using Strong Cryptographic Algorithms

4th European Workshop on RFID Systems and Technologies
10-11 June, 2008, Freiburg, Germany

Martin Feldhofer
IAIK – Graz University of Technology
Martin.Feldhofer@iaik.tugraz.at
www.iaik.tugraz.at
Graz University of Technology →
Faculty of Computer Science →
Institute for Applied Information Processing and Communications (IAIK)

Research groups
- Crypto group (hash functions and block ciphers) – Vincent Rijmen
- EGIZ (e-government)
- Trusted computing/Java security
- Network security
- VLSI group
 - Implementation of crypto algorithms
 - SCA/fault attacks and countermeasures
 - RFID security and tag design
RFID Security Research Projects

C@R: “Collaboration Rural”
 IP in FP6; IAIK performs research towards asymmetric crypto in RFID

BRIDGE: “Building Radio frequency IDentification solutions for the Global Environment”
 IP in FP6; IAIK is task leader for secure RFID tags

PROACT: Currently, local initiative (sponsored by NXP) to support RFID research and education @ TU Graz
 Aims to get European Center of Excellence

SNAP: Secure NFC Applications (national funded project, local cooperation with NXP)
Outline

Motivation
Requirements for RFID tag hardware
Low-power design strategy
Security algorithms in hardware
Comparison of implementations
Implementation security
Conclusions
Questions

- Will every passive RFID tag have security features in a few years?
- What are the difficulties in designing hardware for passive RFID tags?
- Which cryptographic algorithm should be used?
- Why does the RFID industry not have products with strong crypto?
- Are implementation attacks really a threat?
- Is this work theoretical research or has it practical relevance?
Why Security for RFID Systems?

Counterfeiting

Seven percent of world trade is counterfeited goods (ICC/2003)
- 500 billion USD in 2004 (TECTEM/2004)
- 5-10% of car parts (Commission EU/2004)
- 5-8% of pharmaceuticals (WHO/2002)
- 12% of toys in Europe (OECD/2000)

Problems
- High losses
- Decreases the value of brands
- Threat against public health and safety
Why Security for RFID Systems?

Privacy
Is “Big Brother” really watching you?
Monitoring of communication is easy
- Contact less, no clear line-of-sight, broadcast signal
- Even tag-to-reader load modulation observable in 4.5m distance
Activity tracking of persons via UID
Leakage of personal belongings data

→ It is useful to integrate security into RFID systems
Tag Prototype Development

Can be used for …

- … showing weaknesses in RFID systems
- … evaluate security protocols
- … testing of reader prototypes
- … demonstrate new applications

IAIK DemoTags

- HF (13.56MHz) and UHF (860MHz) frequency range
- Programmable via microcontroller
Identification vs. Authentication

Identification
- Claim to be somebody / something

Authentication
- Proof the claim (by special characteristic, shared knowledge, possession or trusted 3rd party)

Pass word (weak authentication)
- user ID + password
- interactive
- be aware of replay attacks!

Hi, I'm Tim
Tag Authentication Protocol

Challenge-response (strong authentication)

- Proofs knowledge of shared secret key
- Requires random “challenge”
- “Response” depends on challenge and secret key (encryption result)
- Compatibility to existing standards

\[f_K(r_A) \]

\[r_A \]
Secure RFID System Architecture
Requirements for a Secure RFID System

Security protocol
- Challenge-response authentication

Cryptographic primitive
- Hash function, block cipher, universal hash function, public key algorithm
- “Lightweight” solution (HB, …)

Standardized algorithm
- Analyzed by many crypto experts
- AES-128, SHA-1, SHA-256, MD5, Trivium, Grain

Strong cryptography
- Appropriate key size (128 bits)

Authentication and/or anonymity

What about the implementation costs on an RFID tag?
RFID Tag vs. Contact-Less Smart Card

Common properties
- Passively powered (no active power supply)
- Communication over air interface

<table>
<thead>
<tr>
<th>RFID tag</th>
<th>CL smart card</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.2 - 5m</td>
<td>< 10 cm</td>
</tr>
<tr>
<td>< 15μA (scarce)</td>
<td>~ 10mA (enough)</td>
</tr>
<tr>
<td>< 1 mm²</td>
<td>15 -20mm²</td>
</tr>
<tr>
<td>minimal, 5-10 Cent</td>
<td>some €</td>
</tr>
<tr>
<td>LF, HF, UHF</td>
<td>HF</td>
</tr>
<tr>
<td>inventory (until now)</td>
<td>authentication</td>
</tr>
<tr>
<td>dedicated circuit</td>
<td>microcontroller</td>
</tr>
<tr>
<td>non/proprietary</td>
<td>crypto coprocessor</td>
</tr>
</tbody>
</table>

Frequency
- LF, HF, UHF

Application
- inventory (until now)
- authentication

Hardware
- dedicated circuit
- microcontroller

Security
- crypto coprocessor

Price (€)
- minimal, 5-10 Cent

Chip area
- < 1 mm²

Power consumption
- < 15μA (scarce)
Challenges of Hardware Implementations

Power consumption
- Maximum 25 µW
- Determines operating range (~1m required)
- Below 15µA (1.5 V) mean current consumption
- 0.35 µm CMOS: ~15 D-FF @ 1MHz

Chip area
- Die size equals silicon costs (5-20 Cent)
- Less than 5000 gate equivalents for security

Security level
- Standardized key length
- 112, 128 bits

BUT
- Very low data rates (26 kbps) ➔ low clock frequency
- High number of available clock cycles

2^{255} odds of winning lottery AND being hit by lightning at the same day
2^{170} number of atoms in the planet
Low-Power Design for RFID Hardware

Not relevant for RFID tags

- Energy consumption per operation
- Power consumption per operation

Relevant for RFID tags

- Power consumption per cycle
- Mean current consumption must not exceed available energy in capacitor
Design Strategies for Crypto on Passive RFID Tags

Design on different levels

- **System level**
 - Protocol design, features of application (challenge-response authentication protocol)

- **Algorithmic level**
 - Select appropriate algorithm (standardized, secure)

- **Architecture level**
 - Data path structure (word width, serialization of algorithm)

- **Circuit level**
 - Avoid glitching activity

- **Gate level (and below)**
 - No influence because of provided standard cells
Low-Power Design

Power dissipation

- $P_{\text{Total}} = P_{\text{Static}} + P_{\text{SC}} + P_{\text{Dynamic}}$
- $P_{\text{Dynamic}} = C_L \cdot V_{\text{DD}}^2 \cdot f$

Design for power reduction

- Lowering V_{DD}
- Use lowest possible clock frequency (<100 kHz)
- Clock gating
- Avoiding glitching activity (sleep-mode logic)

Optimization goal

- Minimize triple ($I_{\text{mean}} [\mu A]$, Chip area [GE], #Clock cycles)
- $P_{\text{Dynamic}} = C_L \cdot V_{\text{DD}}^2 \cdot f \cdot p_{\text{sw}}$
Semi-custom Design Flow

Java Model -> HDL Code

Synthesis -> Place & route

Backend verification -> Fabrication

```
room = 1;
inputState(pt);
if (DEBUG) dumpState("PT");
inputKey();
AddRoundKey;
if (DEBUG)

-- Column/Row Write Registers
-- 2-bit counter x2
-- This registers etc
-----------------------------
column_reg : process
begin
  if (reset=RESET)
    0;
  else if ('1') then
    integer(unsigned
    v_integer(unsigned
    end process;
```
Why AES is Suitable for RFID Tags

Simplicity
- Symmetry
 - Round transformation
- Basic operations
 - Finite field GF(2^8)

Flexibility
- Architecture
 - 8-bit, 32-bit, 128-bit

Balance
- Optimal relationship between flip flops and computational costs
- 256 bits memory and simple operations

Standardized
- FIPS standard since 2001
AES Architecture

Encryption + decryption

128-bit key length

On-the-fly round key calculation

8-bit architecture

Data unit

MixColumns

S-Box

Rcon

Reg

Mux

Controller

RAM

32 x 8-bit

Data Unit

data_in

data_out

ram_data_in

operation_select

ram_data_out

enc

start

read

reset

add_enable

din_enable

A

TU Graz/Computer Science/IAIK/VLSI/Feldhofer
Results of TINA

AES-128 hardware module
 - Suitable for passive RFID tags

Chip area
 - 0.25 mm²
 - 3,400 GEs

Current consumption
 - 3µA @ 100 kHz at 1.5 V
 - Process: 0.35µm CMOS

Data throughput
 - 1000 cycles / 128 bits
Comparison of Implementations

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Chip area [GEs]</th>
<th>I_{mean} [µA @ 100kHz, 1.5V]</th>
<th># Clock cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128</td>
<td>3400</td>
<td>3.0</td>
<td>1032</td>
</tr>
<tr>
<td>SHA-256</td>
<td>10 868</td>
<td>5.83</td>
<td>1128</td>
</tr>
<tr>
<td>SHA-1</td>
<td>8120</td>
<td>3.93</td>
<td>1274</td>
</tr>
<tr>
<td>MD5</td>
<td>8001</td>
<td>3.16</td>
<td>712</td>
</tr>
<tr>
<td>Trivium</td>
<td>3090</td>
<td>0.68</td>
<td>(1,603) + 176</td>
</tr>
<tr>
<td>Grain</td>
<td>3360</td>
<td>0.80</td>
<td>(130) + 104</td>
</tr>
<tr>
<td>TEA</td>
<td>2633</td>
<td>3.79</td>
<td>289</td>
</tr>
<tr>
<td>ECC-192</td>
<td>23 600</td>
<td>13.3</td>
<td>500 000</td>
</tr>
</tbody>
</table>
Comparison of Different Algorithms

Hardware implementations

- Implemented on same platform
- Optimized using same methods
Implementation Security

Traditional attacks on security systems
- Cryptanalysis (mathematics)
- Strength of keys and algorithms

But **weakest link** in system decides about security
- Implementation security also very important

Active attacks
- Fault analysis
- Physical probing

Passive attacks
- Side-channel analysis measuring
 - Power consumption
 - Electromagnetic radiation
 - Timing information
 - Error messages
Side Channels of Cryptographic Devices

- Power
- EM
- Timing

Side channel information

- Input M
- Secret key K
- Implementation of algorithm
- Cryptographic device
- Output C
Differential Power/EM Analysis

- Target of the attacks is an intermediate value that depends on the secret key

![Diagram showing AES, statistical methods, and power traces.](image)
Why Does SCA Work?

The problem is the data depending power dissipation of the internal nodes of (CMOS) circuits

<table>
<thead>
<tr>
<th>Transition of node value</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 0</td>
<td>P_{00}</td>
</tr>
<tr>
<td>0 -> 1</td>
<td>P_{01}</td>
</tr>
<tr>
<td>1 -> 0</td>
<td>P_{10}</td>
</tr>
<tr>
<td>1 -> 1</td>
<td>P_{11}</td>
</tr>
</tbody>
</table>

$P_{00} + P_{10} \neq P_{01} + P_{11}$

$P_{01} \gg P_{10} > P_{00}, P_{11}$
Implementation of Countermeasures

"The goal of countermeasures against SCA attacks is to make the power consumption of the device independent of the intermediate values of the executed algorithm." [Mangard, Oswald, Popp; Power Analysis Attacks – Revealing the Secrets of Smart Cards]

Implemented countermeasures

- **Hiding (Randomization)**
 - Remove data dependency of power consumption
 - Shuffling of operations
 - Execution of dummy cycles

- **Masking**
 - Randomize intermediate values that are processed
 - Use an SCA-resistant logic style
Implementation Security Costs

Requires higher power consumption
- 5 times higher

Requires more chip area
- 5 times larger

Die photo of secure AES chip
Answers

- Will every passive RFID tag have security features in a few years?
 - Probably not, but many tags will have
- What are the difficulties in designing hardware for passive RFID tags?
 - Power consumption and chip area
- Which cryptographic algorithm should be used?
 - Challenge-response protocols with AES-128 (public-key crypto perhaps possible in a few years)
- Why does the RFID industry not have products with strong crypto?
 - Too busy at the moment
- Are implementation attacks really a threat?
 - If it is worth the effort, yes
- Is this work theoretical research or has it practical relevance?
 - Yes, prototypes in real silicon show feasibility of strong crypto on passive RFID tags
Conclusions

Strong cryptography required for RFID systems
Design for low power consumption
Implementation of algorithms
 - AES-128
Implementation security

Contact information
 - Martin Feldhofer
 IAIK – TU Graz
 Martin.Feldhofer@iaik.tugraz.at

Acknowledgements:
 - Johannes Wolkerstorfer
 - Thomas Popp
 - Michael Hutter
 - Stefan Tillich
 - Manfred Aigner
 - Christian Rechberger
Radio Frequency Identification

Security
Data Protection
Applications
Protocols
Implementations
Attacks

http://events.iaik.tugraz.at/RFIDSec08

4th Workshop on RFID Security
9th - 11th July 2008
Budapest, Hungary

Sponsored by:

Organized by: