Printed Electronics – from Vision to First Products

RFID SysTech 2007, Duisburg

Dr. Jürgen Ficker
PolyIC GmbH & Co. KG
Printing meets Electronics Industry

Quelle: MAN

Quelle: Infineon

Printed Electronics

© PolyIC 2007
PolyIC – The chip printers

Printed electronics make

- Thin and flexible
- Inexpensive and simple
- Pervasive and disposable

Electronics come true

Challenges
Parameters to achieve high performance and reliable printed electronics

- Often simplified to
 - single parameters (e.g. mobility or channel length)
 - simple functionality (e.g. transistor performance)

- Optimization of single parameters influence the whole system

 - Complex system of about 40 parameters
 - to be measured, managed and optimized
Four Dimensions of controlled parameters

- Logics
- Physics
- Chemistry/Materials
- Geometrics
Four Dimensions of controlled parameters

Logics
- Basic Components
- Circuit concepts
- Circuit Modeling and Simulation

Physics
Influence of
- Channel length + width
- Capacities (e.g. overlap)
- Interfaces
- Ambient conditions (Temperature, Oxygen, Humidity)

Chemical/Material
- Mobility, Work function
- Contact resistance
- Regioregularity, Mol-weight
- Adequate solvents

Geometric
- Dimensions
- Layer Thickness (conductor, semi-conductor, dielectric)
Next level of complexity - Printing

Logics
- Basic Components
- Circuit concepts
- Circuit Modeling and Simulation

Chemical/Material
- Mobility, Work function
- Contact resistance
 - Regioregularity,
 - Mol-weight
 - Adequate solvents

Physics
- Influence of
 - Channel length
 - Capacities (e.g. overlap)
 - Interfaces
 - Ambient conditions
 (Temperature, Oxygen, Humidity)

Geometrics
- Dimensions
- Layer Thickness
 (conductor, semi-conductor, dielectric)

Printing
- Process
- Formulation
- Throughput
- Scale-Up
- Quality Control

© PolylC 2007
Understanding and Optimizing a model for Printed Electronics

- Target of PolyIC
 - Understand the parameters and their influence
 - Build a system model
 - Optimize the model for future circuits
 - Extend the model to printing processes

- Progress
 - Performance
 - Components per Circuit
 - Milestones to Application: Approaching Printed RFID
Parameters are identified and developed for the 1st generation of products

Logics developed
- Simulation and Modeling Software developed
- Polymer based circuits for RFID tags demonstrated (125kHz, 13.56 MHz, 8Bit@7.5cm)

Physical Parameters identified
- Lifetime >> several month
- Survived 85/85/85 test
- Circuits work at LowVoltage (10-20V)

Chemistry / Materials identified
- Identified 1st Generation Material Set
 - Polythiophen
 - Polyester
- conducting and insulating materials

Geometrical parameters achieved
- < 20µ channel
- Overlaps
- Layer thickness
- Registration
Parameters are identified and developed for the 1st generation of products

- Combined, continuous Roll2Roll Processes (Min. 20m/min)
- First methods for Quality Control established (inline / optical / electrical)
The Fabrication of Polymer ICs at PolyIC

<table>
<thead>
<tr>
<th>Technology</th>
<th>Clean room</th>
<th>Lab printing</th>
<th>Production process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin Coating</td>
<td>Pad Printing</td>
<td>Fast Circuits & Rectifiers</td>
<td>Flexographic Printing</td>
</tr>
<tr>
<td>Photo Lithography</td>
<td>Doctor Blade</td>
<td>Printed Transistors</td>
<td>Offset Printing</td>
</tr>
<tr>
<td>Evaporation</td>
<td>Gravure Printing</td>
<td>Printed Inverters</td>
<td>Gravure Printing</td>
</tr>
<tr>
<td>Wet Etching</td>
<td>Screen Printing</td>
<td>Printed Ring Oscillators</td>
<td>Screen Printing</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Results	Development of Chip Design and Materials	Identify & Test Formulation for	Low cost high volume Product$
---------------------	--	Printing Process	
Speed	Development of Chip Design and Materials	Fast Circuits & Rectifiers	
Yield	High Yield & Stability	High Yield & Stability	
Stability	RFID Demonstrators	Stability	

| Goal | Development of Chip Design and Materials | Identify & Test Formulation for | Low cost high volume Product$ |
|---------------------|--| Printing Process | |

© PolyIC 2007
The chip printers

Milestones to Application: Approaching printed RFID

- Q4.2004: 125kHz 1Bit RFID
- Q3.2005: First 13.56MHz RFID
- Q3.2006: First printed circuits for 13MHz Tags (RF, Ring Oscillator)
- 13.56 MHz Printed RFID

Demonstrator

Roll-to Roll Printed
PolyIC presents Miles of printed MHz Tags

- Prototype
 13.56 MHz RF Tags
 - full flexible and thin
 - Roll-to-Roll manufactured with adapted printing processes
 - High Speed (up to 20m/min)

- Roll-to-Roll printed logic circuits
 - Ring Oscillators
 (needed for 13.56MHz RFID Tags)

- First demonstration and show at OEC06
 Sep 25-27, Frankfurt
Polymer 8-Bit 13.56 MHz RFID-Tag with 7.5 cm reading distance

Inductive coupled RFID Tag with 13.56 MHz rectifier, clock generator, counter, multiplexer, 8-bit ROM and modulator:

- 16 Bit: 8 protocol & 8 data bits: 00000000-10111011
- ~0.1 s read time
- 7.5 cm reading distance
- measured 3 month after fabrication

All layers and devices are made of polymers except antenna, tracks and electrodes

Reader operating with only 1.2 W power supply (allowed 2 W)
Polymer 64-Bit 13.56 MHz RFID-Tag with 3 cm reading distance, inductive coupled

Detail:
- 64 Data bit followed by 64 "Zero" - bits
- Bit width: 6.5ms → 420ms @ -16V for 64-bit
- Bit width: 8ms → 520ms @ -14V for 64-bit
- Chip area ~ 35mm²
- Supply voltage min. -14V
- Reader / RFID distance ~ 3cm
PolyIC – The chip printers

Printed electronics make

- Thin and flexible
- Inexpensive and simple
- Pervasive and disposable

Electronics come true

Applications
Printed Electronics open new markets

- Barcode
- RFID Tag
- Item Level Tagging
- Smart Objects
- Consumer Electronics

System costs, approx. (€)

- 10^{-2}
- 10^{-1}
- 10^{0}
- 10^{1}
- 10^{2}

© PolyIC 2007
Why Printed RFID?

Content Verification
- Check if a box contains a product

Electronic Authentication
- Check if a product is a counterfeit

Tracking & Tracing
- Track a product through the supply chain from production to the retail store

Inventory Control
- Acquire product data automatically without human interaction
Our two product line trademarks: PolyID™ and PolyLogo™

- RFID
 PolyIC – product line PolyID:
 ![RFID Chip](image)

- Smart Objects and Display
 PolyIC – product line PolyLogo:
 ![Display Chip](image)
Our long term target applications: PolyID™: EPC – PolyLogo™: Smart Cards

EPC™ (Electronic Product Code)
- Applications
 - Item Level Tagging
 - Supply chain
 - Inventory Control

Smart card / Intelligent sensor
- Applications
 - Single use sensors
 - Combined optical / RFID function
 - smart package
Contact us – live or virtual

live

PolyIC GmbH & Co. KG
Tucherstr.2
90763 Fürth
Germany

virtual

Tel: +49 911 20249-0
Fax: +49 911 20249-8001
email: info@polyic.com
Web: www.polyic.com