Design and Analysis of a Complete RFID System in the UHF Band Focused on the Backscattering Communication and Reader Architecture

I. Mayordomo, A. Ubarretxena, D. Valderas, R. Berenguer, Í. Gutiérrez
Contents

1. Introduction
2. Goals
3. Tag Model
4. Channel Model
5. Reader Architecture
6. Simulation Results
7. Conclusions
1. Introduction
Introduction (I)

- Passive RFID Systems:
 - Lower size, lower cost, higher lifetime.
- UHF bands:
 - 860-960 MHz and 2.45 GHz ISM Bands
 - Higher data-rates, longer distances.
- Trade-off:
 - Antenna Size vs Reading distance.
 - 868 MHz (Longer distance preferable)
- Normative:
 - EPCGlobal UHF Class 1 Generation 2
 - EN 302 208-1
Introduction (II)

- Reader-to-tag Communication: ASK
- Tag-to-reader Communication: ASK, PSK
 - Backscattering
RFID SysTech’07

2. Goals
Goals

- State of the art:
 - Guidelines and results from the tag point of view.
 - Little information about long range RFID reader design.
- Complete long range passive RFID system design and analysis.
- Compliant with the EPCGlobal UHF Class 1 Generation 2 standard and European regulations.
- Focused on reader architecture and backscattering tag-to-reader communication.
- Main objective: maximize operating distance.
3. Tag model
Tag model (I): Backscattering

- Energy reaching the tag:
 - Part is used for supply
 - Part is backscattered

- Changes in reflection coefficient
 - Resistance: ASK modulation
 - Reactance: PSK modulation (longer distances)

\[
\theta = -\arctan\left(\frac{R_A X}{R_A^2 + 2X^2}\right)
\]

\[
P_{BS} = P_{AV} \frac{4\left(R_A^2 + X^2\right)}{R_A^2 + 4X^2}
\]

Tag Model (II)

- Backscattered power must remain constant
- A series of equations developed to work out L and C in order to cause a predefined dephase in the backscattered signal.
4. Channel Model
- Signal crosses the channel twice
- Free Space Losses:

\[FSL = \left(\frac{\lambda}{4\pi d} \right)^4 \]

- Additive White Gaussian Noise (AWGN)
- Random Phase Shift
5. Reader Architecture
Reader Architecture

Diagram showing the reader architecture with components such as Antenna, Band Selection Filter, LNA, LO, PA, Driver, 90°, AC Coupling, Mixer, Channel Selection Filter, VGA, ADC, and Baseband Processing.
Power received at the reader

- Polarization considerations:
 - Tag antenna: linear
 - Tag position: arbitrary
 - Reader antenna transmits circular:
 - 3dB Losses due to polarization mismatch

- Friis Formula:

\[P_R = P_T G_{\text{tag}}^2 G_{\text{reader}}^2 \frac{4(R_A^2 + X^2)}{R_A^2 + 4X^2} p \left(\frac{\lambda}{4\pi d} \right)^4 \]
Transmission Leakage

- The reader transmits and receive at the same time and in the same frequency.
- Reader radiated power: 2 W e.r.p. (33 dBm)
 - Circulator isolations around 30 dB
- Backscattered signal masked
- Very high dynamic range required, RF stage can get saturated (mixer)
- DC Offsets at baseband due to self-mixing
 - Coupling stage necessary
Output switching circuitry

- 2 Options for simultaneous Tx/Rx:
 - Circulator (isolation provided by circulator)
 - 2 Antennas (external isolation)

- Both can be combined:
Quadrature downconversion

- Phase shift introduced by the channel.
 - Modulation is not affected but...
- Coherent detection is not realizable.
- I/Q Demodulation necessary:
 - When one channel is at maximum sensitivity, the other is at minimum.
- Two options:
 - Parallel processing
 - I and Q Paths combination
Demodulation

\[i(t) = \sum_{m=0}^{\infty} A \text{Rect} \left(\frac{t - T/4 - mT/2}{T/2} \right) \cos(\theta_m + \beta + \phi(t)) + n(t) \]

\[q(t) = \sum_{m=0}^{\infty} A \text{Rect} \left(\frac{t - T/4 - mT/2}{T/2} \right) \sin(\theta_m + \beta + \phi(t)) + n(t) \]
6. Simulation Results
Simulation results

- Study of the parameters that mainly affect reading distance.
- A complete passive RFID system simulation environment has been developed in ADS.
- Reader architecture is simulated with real commercial components.
- Maximum reading distance from the reader point of view.
 - Maximum BER at the reader (10^{-3}).
- Typical phase variations: 5° - 15°
Data Rate (FM0 Encoding)

- Date rates allowed by the standard:
 - From 40 Kbps to 640 Kbps
• Commercial circulators: ~30 dB Isolation
 – A 60 dB isolation circulator reported
Phase Noise

- Commercial oscillator phase noise (dBc/Hz):
 - -92@1kHz, -116@100kHz, -138@1MHz, -144@3MHz
7. Conclusions
Conclusions

- A complete long range passive RFID system has been designed and analyzed.
- Guidelines for a proper long range passive RFID reader are derived.
- The tag is not the only limiting factor in a passive RFID system.
- Tx/Rx Isolation and Phase noise are reader key design issues.
Thank you for your attention. Questions and comments are welcome.

Iker Mayordomo
Contact: imayordomo@tecnun.es